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ABSTRACT 

 

 The chemistry of the reaction of Os3(CO)10(NCCH3)2 with representatives of 

unsaturated amides and esters, RCOCHCH2 (R=(CH3)2N, CH3O) has been investigated. In 

these reactions, it has been observed that a CH bond on the β-carbon atom is readily 

activated by triosmium carbonyl clusters. The activation of β-carbon C-H bond in 

unsaturated amides and esters provides a robust platform for studying multicenter C-H 

bond transformations and for C-C bond formation via hydrogen shift and CO insertion 

processes. In this work, proposed mechanistic approaches have been taken in order to better 

understand and study the relationship between the characterized species. In addition, a few 

non-identified species have been predicted to exist. Furthermore, recommendations on how 

this work can be further studied and improved have been made. A series of activated 

unsaturated amides and esters: Os2(CO)6(µ-H)(µ-O=C(N(CH3)2)CHCH), 1, Os4(CO)12(µ-

O=C(N(CH3)2)CHCH)2, 2, Os3(CO)9(µ-O=C(N(CH3)2)CH2CHCCHC(N(CH3)2)=O), 3, 

Os3(CO)8(µ-O=C(N(CH3)2)CHCH)2, 4, Os6(CO)20(µ-H)(µ-O=C(N(CH3)2) CHCH), 5, 

HOs3(CO)10(µ-O=C(N(CH3)2)CHCH), 6, Os5(CO)15(µ-O=C(N(CH3)2)CHCH)2, 7, and 

Os3(CO)9(µ-H)(µ-O=C(OCH3)CHCH),  8, were synthesized and isolated. They are 

described in Chapter 1. Each of the new compounds has been characterized by FT-IR, 

NMR (1H), mass-spectra and single crystal X-ray diffraction analysis.  
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CHAPTER 1 

STUDIES OF CH ACTIVATION IN UNSATURATED AMIDES AND ESTERS BY 

TRINUCLEAR METAL CARBONYL CLUSTERS OF OSMIUM:  

STUDY, SYNTHESIS AND CHARACTERIZATION 

 

1.1 INTRODUCTION 

The selective transformation of ubiquitous but unreactive CH bonds to other 

functional groups has far-reaching practical implications, ranging from more efficient 

strategies for fine chemical synthesis to the replacement of current petrochemical 

feedstocks by less expensive and more readily available alkanes. Metal catalyzed C-H bond 

activation and subsequent addition of the activated species to unsaturated compounds 

constitute one of the most economical and efficient methods in organic synthesis.   

Functionalization of unsaturated compounds into carbonyl-containing molecules is 

an area of great interest. 1 Transition metal-catalyzed hydroacylation, hydroesterification, 

hydrocarbamoylation, and hydroarylation processes including an insertion of unsaturated 

compounds (such as alkenes2, alkynes2, or ketones3) into activated C-H bond of aldehydes, 

constitutes one of the most economical and efficient methods for the C-C bond formation. 

These transformations of simple unsaturated hydrocarbons to compounds with more 

functional groups are very important and highly valuable in the chemical industry, 

pharmaceuticals and organic research. It also helps us study and better understand catalytic   
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systems and solvent systems to be able to propose and predict the result of more 

reactions in the future.4 

Condensation polymers such as polyesters and polyamides are of great importance 

in industrial manufacturing. Nylon is the most prominent polyamide used in industry and 

has numerous applications such as textiles, automotive industry, carpets, utensils and 

sportswear due to their high durability and strength. The transportation manufacturing 

industry is the major consumer, accounting for 35% of polyamide (PA) consumption. In 

addition, nylon is recyclable and can easily be re-made and re-used through particular 

industrial processes which makes a carbon efficient feedstock of most polymeric products. 

 Methyl Acrylate (MA) is one of the most significant esters used predominantly in 

industry and as a precursor for many of catalytic reactions. Hence, dimerization of methyl 

acrylate has commanded a lot of attention throughout the years, among which, transition 

metal catalyzed activation and dimerization or polymerization of this olefin has been the 

center of attention for a long time. Monometallic and bimetallic clusters of transition metals 

of Pd, Ru, Pt, and Rh have been successfully utilized, studied, and reported for this purpose. 

Unlike numerous studies carried out on activation and end to end dimerization of MA, 

there are not many examples of activation or dimerization of N, N-Dimethylacrylamide 

(DMA) using transition metals.  

As will be mentioned later in this report, Adams et al. have studied activation and 

functionalization of DMA using Ru5(μ5-C)(CO)15 cluster and characterized the isolated 

complexes. Figure 1.1 shows the line structure for MA and DMA.  
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Despite all the effort in order to functionalize DMA using Ru5(μ5-C)(CO)15, end to 

end dimerization of DMA is unique to this work and there is no reported complex which 

possesses such configuration of the chelated DMA. Moreover, osmium has not been used 

to activate either of MA or DMA molecules and study of CH activation in any of the 

reported works related to this field and further characterization of the formed species using 

trimetallic carbonyl cluster of osmium is unique to this work as well.  

 

 

 

Figure 1.1 Molecular structures of MA (left) and DMA (right) 

Adipic Acid, mostly derived from dimerization of MA is of high importance in 

industrial research and chemical manufacturing.  It is primarily used for preparation of 

nylon, and polyurethanes, and other polymers. Its industrial synthesis involves mixture of 

nitric acid, cyclohexanone, and cyclohexanol which produces nitrous oxide as a byproduct 

and damages the ozone layer by increasing the greenhouse effect.  

Numerous studies have been carried out in the past several decades to utilize 

transition metals as means to improve the green chemistry of adipic acid synthesis and also 

facilitate its preparation. Most catalytic processes employed in the chemical industry 

involves C6 feedstock, whereas utilizing transition metals as means to facilitate this 

catalytic process has facilitated usage of C3 feedstocks such as methyl acrylate as well 

which are cheaper and result in fewer side products.   
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Selective tail-to-tail coupling of olefins such as acrylates has been of interest since 

several decades ago because it facilitates the polymerization of such olefins. For example, 

dimerization of methyl acrylate has been studied in order to synthesize adipic acid and its 

usage as an intermediate step in pharmaceutical applications pertaining to drug synthesis. 

There are numerous reports of transition metal catalyzed dimerization of methyl acrylate 

using ruthenium5, rhodium6, and palladium7.  

Another way of achieving Nylon 6,6 or similar polymers is by end to end 

dimerization of Acrylamides such as DMA studied in this work. Achieving longer chain 

valuable dimers or polymers such as adipic acid or nylon 6,6 is very significant in chemical 

industry as it eliminates the need for mixture of different organic precursors to achieve the 

desired product which might include a large amount of the starting material left in the 

mixture after the formation of the desired product.  

Numerous studies have been carried out throughout the years in order to optimize 

activation and end to end dimerization of MA using transition metal clusters. In the work 

by Barlow et al., it was found that palladium catalysts are highly selective in doing so, but 

they suffer from short life cycle due to precipitation.  

However, McKinney et al. utilized Ru(III) complexes to catalyze dimerization of 

MA with assistance of Zinc and other reagents.8 

In their proposed mechanism, C-H activation of MA Beta-carbon by ruthenium 

metal was assumed which was followed by insertion of another MA molecule in the Ru-H 

bond. Hauptman et al studied Rh (III) catalyzed dimerization of MA and proposed 
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initiation of the catalytic cycle by protonation of the catalyst (Cp*Rh(C2H4)2(Cp* =C5Me5) 

which would subsequently react with MA9. 

 

 

 

 

 

 

 

Figure 1.2 Nylon 6,6 synthesis pathway from Adipic Acid and Hexamethylene Diamine 

Studies by Adams et al. have shown that multinuclear clusters of Ruthenium 

Ru5(μ5-C)(CO)15 can successfully activate MA’s CH bond at the beta-carbon atom of the 

vinyl group in a oxidation addition of MA and decarbonylation of the Ru5 cluster.  

In this study, the Ru5 cluster was treated with methyl acrylate at 80 o C to yield a 

coordinated CO to one of the ruthenium atoms and an open Ru5 cluster. Then, through CO 

elimination, the β-hydrogen of the MA ligand was activated resulting in a chelating 

acrlyloyl and a 5-membered ring including one ruthenium atom formation.  

All ruthenium atoms in this activated cluster follow the 18 electron rule. In addition, 

they have shown several alkenyl CH activation complexes of various olefins such as 
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dimethylformamide, vinyl acetate, N, N-dimethylacrylamide using the Ru5C carbonyl 

cluster.10 (Figure 1.3)  

 

Figure 1.3 Activation of Methyl Acrylate by the Ru5(μ5-C)(CO)15 complex by Adams et 

al. 

Ru5(μ5-C)(CO)15 was shown to activate methyl acrylate and vinyl acetate through 

a ring opening process in the Ru5 cluster which enables C-H activation of the olefin by 

acquiring two electrons from the ligand. Both C-H activations occurred at the vinyl site of 

the olefins, however, at the α-carbon atom for vinyl acetate and at the beta carbon atom for 

methyl acrylate, respectively. This is a perfect example of substituent-directed CH 

activation on olefins leading to C-H activation and functionalization11.  

In a similar work by Adams et al., vinyl acetate was activated and transformed to 

other valuable chemicals using the previously reported binuclear rhenium complex of 

Re2(CO)8(μ-C6H5)(μ-H). In this work, the dirhenium complex activates the β-carbon of 

methyl acrylate and the vinyl ligand is chelated to the cluster by a µ-η2-(σ + π)-coordinated 

C2H3 (vinyl) coordination. An interesting fact about this C-H activation is the absence of 

need for loss of any CO from the cluster or cleavage of any Re-Re bond unlike that of the 

Ru5 cluster with methyl acrylate12. (Figure 1.4) 
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This work was an inspiration for us to attempt at activation of β-carbon of DMA 

and its functionalization. Ru5(μ5-C)(CO)15 becomes activated by a ring opening process 

which makes it suitable for oxidative addition reaction, and, similarly, Os3(CO)10(NCCH3)2 

becomes activated by readily losing two acetonitrile molecules which also makes it suitable 

for C-H activation reactions.  

 

Figure 1.4 Activation of vinyl acetate by Re2(CO)8(μ-C6H5)(μ-H) Complex by  

Adams et al. 

This work was an inspiration for us to attempt at activation of β-carbon of DMA 

and its functionalization. Ru5(μ5-C)(CO)15 becomes activated by a ring opening process 

which makes it suitable for oxidative addition reaction, and, similarly, Os3(CO)10(NCCH3)2 

becomes activated by readily losing two acetonitrile molecules which also makes it suitable 

for C-H activation reactions.  

Osmium carbonyl clusters form stable products and through further 

decarbonylation by additives such as trimethylamine N-oxide, they may react with other 

species and transform into higher or lower nuclearity clusters. End to end dimerization of 

DMA may not be feasible with usage of Ru5(μ5-C)(CO)15 due to steric issues, but easily 

possible with Os3 clusters as cleavage of Os-Os bond is fairly easy and the cluster can 
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become open and form a linear or angular configuration to facilitate the location of DMA 

dimer. 

1.2 Experimental details 

General Data. Reagent grade solvents were dried by the standard procedures and 

were freshly distilled prior to use.  All reactions were performed under a nitrogen 

atmosphere. Infrared spectra were recorded on a Thermo Nicolet Avatar 360 FT-IR 

spectrophotometer. 1H NMR and 31P NMR spectra were recorded on a Varian Mercury 300 

spectrometer operating at 300.1 MHz. Mass spectrometric (MS) measurements performed 

by a direct-exposure probe using electron impact ionization (EI) were made on a VG 70S 

instrument, positive/negative ion mass spectra were recorded on a Micromass Q-TOF 

instrument by using electrospray (ES) ionization. Os3(CO)12 was obtained from STREM 

and were used without further purification. Os3(CO)10(NCCH3)2
13

 was prepared according 

to the previously reported procedures. Product isolations were performed by TLC in air on 

Analtech 0.50mm silica gel 60 Å F254 glass plates and Analtech 0.25 mm aluminum oxide 

UV254 glass plates. 

Synthesis of Os2(CO)6(µ-H)(µ-O=C(N(CH3)2)CHCH), 1, Os4(CO)12(µ-O=C(N(CH3)2) 

CHCH)2, 2, and, Os3(CO)9(µ-O=C(N(CH3)2) CH2CHCCHC(N(CH3)2)=O), 3. 

            Os3(CO)10(NCCH3)2 (80 mg, 0.085 mmol) were added to a 100 mL three neck flask 

containing a solution of N,N-dimethylacrylamide (42.50 mg, 0.428 mmol) in 60 mL 

heptane.  The reaction mixture was allowed to stir in reflux for 7 h with intermittent 

monitoring by IR spectroscopy.  The solvent was then removed in vacuo, and the product 

was isolated by TLC by using a mixture of hexane and methylene chloride (3:1 ratio) 

solvent to yield three bands. In order of elution they gave 13.1 mg of yellow Os2(CO)6(µ-
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H)(µ-O=C(N(CH3)2)CHCH), 1 (16.3 % yield), 12.3 mg of Os4(CO)12(µ-

O=C(N(CH3)2)CHCH)2, 2 (15.4 % yield), 23.0 mg of yellow Os3(CO)9(µ-

O=C(N(CH3)2)CH2CHCCHC(N(CH3)2)=O), 3 (28.8  % yield). Spectral data for 1: IR CO 

(cm-1 in methylene chloride): 2095(m), 2048(vs), 2011(m), 1997(s), 1975(m), 1956(m). 1H 

NMR (CD2Cl2, 25oC, TMS, in ppm)  = -12.77 (s, 1H, Hydride),  = 5.32 (s,1H, CH),  = 

6.58 (s,1H, CH),  = 3.54 (s, 6H, N(CH3)2); Mass Spec. Pos. Ion ES/MS m/z 649. Spectral 

data for 2: IR  CO (cm-1 in methylene chloride): 2093 (w), 2085(w), 2069(s), 2047(m), 

2034(m), 1998(s), 1978(m).  1H NMR (CD2Cl2, 25oC, TMS, in ppm)  = 11.94 (d, 2H, 

CH), 11.14 (s, 6H, N(CH3)2), 8.18 (d, 2H, CH). Mass Spec. EI+/MS m/z= 1295 (M+). 

Spectral data for 3: IR  CO (cm-1 in methylene chloride): 2121 (w), 2070(m), 2059(s), 

2048(vs), 2005(s), 1982(s), 1962(s), 1935(w).  1H NMR (CD2Cl2, 25oC, TMS, in ppm)  = 

8.01 (d, 1H, CH2), 7.61 (t, 1H, CH), 4.69 (d, 1H, CH2, 3.62 (s, 6H, N(CH3)2). Mass Spec. 

EI+/MS m/z= 1020 (M+). 

Synthesis of Os3(CO)8(µ-O=C(N(CH3)2)CHCH)2, 4, and Os6(CO)20(µ-H)(µ-

O=C(N(CH3)2)CHCH)2, 5.   

            Os3(CO)10(NCCH3)2 (80 mg, 0.085 mmol) were added to a 100 mL three neck flask 

containing a solution of N,N-dimethylacrylamide (144.3 mg, 1.45 mmol) in 60 mL 

methylene chloride.  The reaction mixture was allowed to stir at reflux for 12 h with 

intermittent monitoring by IR spectroscopy.  The solvent was then removed in vacuo, and 

the product was isolated by TLC by using a mixture of hexane and methylene chloride (3:1 

ratio) solvent to yield two bands. In order of elution they gave 5.0 mg of yellow Os3 (CO)8 

(µ-O=C(N(CH3)2)CHCH)2, 4 (6.2 % yield), 18.2 mg of Os6(CO)20(µ-H)(µ-

O=C(N(CH3)2)CHCH)2, 5 (22.5 % yield). Spectral data for 4: IR CO (cm-1 in methylene 
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chloride): 2094(w), 2077(m), 2068(m), 2059(vs), 2034(w), 2004(m), 1989(s), 1967(m).1H 

NMR (CD2Cl2, 25oC, TMS, in ppm)  = 7.98 (d,2H, CH),  = 7.5 (d, 2H, CH),  = 3.54 (s, 

6H, N(CH3)2); Mass Spec. Pos. Ion ES/MS m/z = 984. Spectral data for 5: IR  CO (cm-1 

in methylene chloride): 2124 (w), 2085(s), 2074(m), 2060(w), 2050(m), 2040(vs), 

2018(w), 2007(w), 1988(w). 1H NMR (CD2Cl2, 25oC, TMS, in ppm)  = -13.94 (s, 

Hydride),  = 8.45 (d, 1H, CH), 4.82 (d, 1H, CH), 3.05 (s, 3H, N(CH3)2), 2.72 (s, 3H, 

N(CH3)2). Mass Spec. EI+/MS m/z= 1802 (M+). 

Synthesis of HOs3(CO)10(µ-O=C(N(CH3)2)CHCH), 6. 

            Os3(CO)10(NCCH3)2 (80 mg, 0.085 mmol) were added to a 100 mL three neck flask 

containing a solution of N,N-dimethylacrylamide (192.4 mg, 1.94 mmol) in 30 mL 

methylene chloride.  The reaction mixture was allowed to stir at room temperature for 2 h 

with intermittent monitoring by IR spectroscopy.  The solvent was then removed in vacuo, 

and the product was isolated by TLC by using a mixture of hexane and methylene chloride 

(1:1 ratio) solvent to yield three bands. In order of elution they gave 5.0 mg of yellow 

known compound Os3 (CO)11(µ-H)(µ-Cl) (6.42 % yield), 6.1 mg of yellow known 

compounds Os3(CO)12(µ-H)(µ-OH), (8.00 % yield), 55.8 mg of yellow Os3(CO)9(µ-H)(µ-

O=C(OCH3)CHCH), 6 (69.11 % yield). Spectral data for 6: IR CO (cm-1 in methylene 

chloride): 2110(w), 2074(s), 2045(w), 2017(s), 1980(m).1H NMR (CD2Cl2, 25oC, TMS, in 

ppm)  = -9.831 (s, 1H, Hydride),  = 8.36 (s,1H, CH),  = 4.62 (s,1H, CH),  = 2.96 (s, 

6H, N(CH3)2);  Mass Spec. Pos. Ion ES/MS m/z = 910.  
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Synthesis of Os5(CO)15(µ-O=C(N(CH3)2)CHCH)2, 7. 

HOs3(CO)10 (µ-O=C(N(CH3)2)CHCH), 6 (30 mg, 0.032 mmol) was added to a 

NMR tube containing a solution of trimethylamine N-oxide (4.0 mg, 0.04 mmol) in 3 mL 

d-methylene chloride.  The reaction mixture was placed in oil bath at 45 ͦ C for 7 days with 

intermittent monitoring by NMR spectroscopy. The solvent was then removed by 

evaporation at room temperature, and the product was isolated by TLC by using a mixture 

of hexane and methylene chloride (1:1 ratio) solvent to yield three bands. In order of elution 

they gave 3.0 mg of yellow Os3(CO)12, (10.34 % yield), 5 mg of Os2(CO)6(µ-H)(µ-

O=C(N(CH3)2)CHCH), 1 (24.13% yield), and 10.2 mg of  Os5(CO)15(µ-

O=C(N(CH3)2)CHCH)2 , 7 (20.71% yield). Spectral data for 7: IR CO (cm-1 in methylene 

chloride): 2091(w), 2071(m), 2056(s), 2015(m), 1990(s).1H NMR (CD2Cl2, 25oC, TMS, in 

ppm)  = -15.03 (s, 1H, Hydride),  = 5.68 (s,1H, CH),  = 5.02 (s,1H, CH),  = 2.887(s, 

6H, N(CH3)2);  Mass Spec. EI+/MS m/z= 1802 (M+). 

Synthesis of Os3(CO)9(µ-H)(µ-O=C(OCH3)CHCH), 8. 

            Os3(CO)10(NCCH3)2 (80 mg, 0.085 mmol) were added to a 100 mL three neck flask 

containing a solution of methyl acrylate (CH3OCOCHCH2) (36.91 mg, 0.42 mmol) in 60 

mL hexane.  The reaction mixture was allowed to stir in reflux for 3 h with intermittent 

monitoring by IR spectroscopy.  The solvent was then removed in vacuo, and the product 

was isolated by TLC by using a mixture of hexane and methylene chloride (3:1 ratio) 

solvent to yield three bands. In order of elution they gave 5.0 mg of yellow known 

compound Os3(CO)11(µ-H)(µ-Cl) (6.25 % yield), 6.1 mg of yellow known compounds Os3 

(CO)12(µ-H)(µ-OH), (7.63 % yield), 23 mg of yellow Os3(CO)9(µ-H)(µ-O=C(OCH3) 
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CHCH), 8 (28.75 % yield).  Spectral data for 8: IR CO (cm-1 in methylene chloride): 

2096(w), 2068(s), 2037(vs), 2009(s), 1997(m).1H NMR (CD2Cl2, 25oC, TMS, in ppm)  = 

-13.94 (s, 1H, Hydride),  = 9.084 (d, 1H, CH),  = 5.54 (d, 1H, CH),  = 3.52 (s, 3H, 

OCH3); Mass Spec. Pos. Ion ES/MS m/z = 910.  

1.3 Crystallographic Analyses  

Yellow crystals of 1, 2, 3, 4, 6, 7, 8 and red single crystals of 5 suitable for x-ray 

diffraction analyses were obtained by slow evaporation of solvent from solutions in 

hexane/methylene chloride solvent mixtures at 5 °C. Each crystal was glued onto the end 

of a thin glass fiber.  X-ray intensity data were measured by using a Bruker SMART APEX 

CCD-based diffractometer using Mo K radiation ( = 0.71073 Å).  The raw data frames 

were integrated with the SAINT+ program by using a narrow-frame integration 

algorithm.14 Corrections for Lorentz and polarization effects were also applied by using 

SAINT+.   

An empirical absorption correction based on the multiple measurement of 

equivalent reflections was applied by using the program SADABS. All structures were 

solved by a combination of direct methods and difference Fourier syntheses, and refined 

by full-matrix least-squares on F2 by using the SHELXTL software package.15 All non-

hydrogen atoms were refined with anisotropic displacement parameters.  Hydrogen atoms 

were placed in geometrically idealized positions and included as standard riding atoms 

during the final cycles of least-squares refinement.  

Crystal data, data collection parameters, and results of the analyses are listed in 

Tables 1.1, 1.2, and 1.3. Compounds 1, 3, and 7 crystallized in the triclinic crystal system. 
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The space group P1 was assumed for both 1, 3 and 7 was confirmed by the successful 

solution and refinement for the structure in each case. Compound 2 crystallized in the 

orthorhombic crystal system and the space group Pna2(1) was identified by the systematic 

absences in the diffraction data. Compounds 4, 5, 6, and 8 crystallized in the monoclinic 

crystal system. For compound 4, the space group C2/c, for compound 5 space group Cc, 

for compound 6, space group  C(2)/c, and for compound 8 space group P2(1)/c were 

identified by the systematic absences in the diffraction data. 

1.4 Results and Discussion 

 N,N-dimethylacrylamide (DMA) has a formula of (CH3)2NC(=O)CHCH2 and is a 

clear, colorless to yellowish liquid with a boiling point of 171.0 ºC and density of 0.964 

g.cm-3. DMA is an unsaturated amide which contains one α and two β hydrogens and a 

double bond between α and β carbon atoms. (Figure 1.1) 

 Os3(CO)10(NCCH3)2 is a useful activated form of Os3(CO)12  which was reported 

in 1981 by Johnson et al 13. It can be easily made by reaction of Os3(CO)12
 with 

trimethylamine N-oxide in a mixture of methylene chloride and acetonitrile at room 

temperature for 2 hours in almost 100% yield.  

 In the reactions of Os3(CO)10(NCCH3)2 with DMA, seven CH-activated 

compounds were obtained, and they are all shown in Scheme 1.1. The carbonyl ligands 

coordinated to the osmium atoms are not shown for clarity. The products of this reaction 

include one Os2, three Os3, one Os4, one Os5 and one Os6
 clusters containing activated 

DMA. Among the activated DMA complexes, 1, 5, and 7 contain bridging hydrides and 

compound 6 contains a terminal hydride ligand bonded to the osmium atom not coordinated 



www.manaraa.com

14 
 

by activated DMA. Compounds 2, 3, 4, and 7 contain two activated DMA ligands in their 

structure which is in the form of an acryloyl in 2, 4, and 7 and in the form of a dimer in 

3All of the compounds are electronically saturated clusters which all meet the requirements 

of the 18 electron rule. 

In order to show how Os3(CO)12 was transformed into the products, we propose the 

mechanism outlined in scheme 1.2. The carbonyl ligands coordinated to osmium atoms 

were omitted for clarity. As mentioned earlier in synthesis of the DMA activated products, 

Os3(CO)10(NCCH3)2,
 a decarbonylated form of Os3(CO)12, was used in reaction with DMA 

molecule because it readily loses two acetonitrile molecules in the solution or in reaction 

with another molecule and becomes unsaturated by four electrons which makes the 

triosmium cluster much more reactive and suitable for C-H activation and oxidative 

addition reactions.  

As is outlined in scheme 1.2, upon interaction with decarbonylated osmium metal 

atoms, it is expected that the oxygen atom in the carbonyl group of DMA approaches the 

osmium atom first, binds to the metal atom, and acts as a directing group which brings the 

remainder of the transition metal closer to the rest of the molecule and provides the grounds 

for activation of − and −hydrogen atoms on the vinyl group (Ia).  

Once DMA approaches the activated Os3 cluster, we propose that its vinyl group 

(C2H3) coordinates to the osmium atom previously approached by the oxygen atom of 

DMA (Ib). The intermediate through which the transition metal forms a bond with the − 

hydrogen atom is proposed to form a six-membered ring including Os-O-C-C-C-H which 

eases the access of transition metal to the −hydrogen atom and its ultimate activation and 
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is favorable and more stable compared to the five-membered ring intermediate for 

activation of α-hydrogen. 

 

Scheme 1.1. Line structures of seven CH-activated osmium cluster compounds obtained 

from reactions of Os3(CO)10(NCCH3)2 and DMA: Os2(CO)6(µ-H) 

(µ-O=C(N(CH3)2)CHCH), 1, Os4(CO)12(µ-O=C(N(CH3)2CHCH)2 , 2, and, Os3(CO)9  

(µ-O=C(N(CH3)2)CH2CHCCHC(N(CH3)2)=O), 3, Os3(CO)8(µ-O=C(N(CH3)2)CHCH)2, 

4, Os6(CO)20(µ-H)(µ-O=C(N(CH3)2)CHCH)2, 5, HOs3(CO)10(µ-O=C(N(CH3)2)CHCH), 

6,  and Os5(CO)15(µ-O=C(N(CH3)2)CHCH)2, 7. 
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Because of the presence of the double bond between α- and − carbons of DMA, 

vinyl segment of DMA coordinates to the cluster through a µ-η2-( σ + π)-coordinated vinyl 

coordination which similar to acryloyl coordination found in vinyl acetate activation by 

Re2(CO)8(μ-C6H5)(μ-H) studied by Adams et al. In this process, - carbon forms a σ bond 

and α and −carbon atoms form a π- coordination to the Os3 cluster.  

Compound 6 is formed by coordination of oxygen atom to the cluster, cleavage of 

Os-Os bond and upon activation of −hydrogen of chelated DMA. It is a saturated 50 

electron complex and is a significant step in synthesis of all the obtained species in this 

study since 6 is a precursor to majority of the identified complexes. It is crucial to note that 

in 6 the hydride ligand is not a bridge between two osmiums in the cluster but is instead a 

terminally-coordinated hydride ligand. In addition, the osmium atom containing the 

hydride ligand has four carbonyl groups coordinated to it whereas the other two osmium 

atoms have only three (Figure 1.11)  

This means if this osmium atom loses a CO then the cluster becomes unsaturated 

with this linear configuration, therefore there would be a need for formation of Os-Os bond 

so that the cluster becomes closed and the saturation requirement become 48 instead of 50, 

making it possible for the complex to become saturated by forming this metal-metal bond 

which results in a saturated 48 electron species, I* (Figure 1.5). Ic is an intermediate through 

which the transformation occurs through which terminal hydride forms a bridge between 

two osmium atoms and Os-Os forms.  

We made numerous attempts to decarbonylate 6 using trimethylamine N-oxide to 

isolate I*, however, all those attempts were unsuccessful. As outlined in figure 1.5, I* 
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contains an acryroyl bridging (µ3-) between all three osmium atoms and a bridging hydride 

(µ2-) unlike 6. The equivalent of I* was isolated by reaction of Os3(CO)10(NCCH3)2 with 

MA yielding 8 (Figure 1.13). Because of the significant similarity between I* and 8, we 

expect them to have very similar characterizations such as the hydride NMR resonance, 

and IR absorption spectrum. 

 

 

 

 

Figure 1.5. Proposed structure of I*, a saturated 48 e species with the formula of  

Os3(CO)9(µ-H)(µ3-O=C(N(CH3)2)CHCH).  

Compounds 1, 2, and 3 were formed as a result of 1:5 reaction between 

Os3(CO)10(NCCH3)2 and DMA in reflux of heptane for 7 hours.  

Figure 1.6 shows an ORTEP diagram of the molecular structure of Os2(CO)6(µ-

H)(µ- O=C(N(CH3)2)CHCH), 1, showing 30% thermal ellipsoid probability. Compound 1 

is a 34 electron saturated species which includes a bridging acryroyl (µ2-) between Os1 and 

Os2 in which O1 is coordinated to Os2 with a bond length of 2.120(3) Å and Os1-Os2 bond 

length of 2.8997(3) Å. Bridging hydride (µ-H) ligand forms a 1.85(6) Å bond to Os1 and 

a 1.69(6) Å bond to Os2. The difference between the bond length between Os1-H1 and 

Os2-H1 can be justified by the asymmetrical geometry of the vinyl coordination to Os2 

cluster. Atoms C2 and C3 of the chelated vinyl group are coordinated through a µ-η2-(σ + 
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π) coordination to the Os2 cluster unlike O1-Os2 bond which causes an imbalance in the 

symmetry of the formed bonds between Os1-H1 and Os2-H1.  

 

Scheme 1.2. Proposed mechanism of C-H activation of DMA by triosmium carbonyl 

cluster and formation of I* and 6. 

Compound 2 is a 66 electron complex which is also an electronically saturated 

structure. There are no bridging hydride (µ-H) ligands in this complex, however, there are 

two activated DMA molecules in the form of bridging acryloyls between Os1-Os2 and 

Os3-Os4. The Os2-Os3 bond is slightly longer that Os1-Os2 and Os3-Os4 which is 
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perfectly reasonable as there is no chelated DMA molecule bridging between them and 

causing them to become close to one another. On the other hand, Os1-Os2 has almost the 

same bond length as Os3-Os4 since they both are bridged by identical acryloyl groups. 

(Figure 1.7)  

As is the case with 2, compound 3 also does not have any bridging hydride ligands 

in its structure and no hydride NMR resonances were observed either (Figure 1.8). 

Compound 3 is a 50 electron saturated complex which satisfies the 18 electron rule for 

each metal atom in the complex.  

As mentioned earlier in this work, 3 contains a dimer between two DMA molecules 

chelated to the Os3 cluster through (σ + π) coordination to the Os2 and σ coordination to 

Os3 and Os1. This is a perfect example of end to end dimerization of DMA using 

polynuclear transition metal clusters which to our knowledge has not been studied before.  

As it will be discussed later in this chapter, we propose that 3 was formed by 

treatment of 6 with excess DMA through a transformation process outlined in scheme 1.4 

which involves C-C coupling between the β-carbon atoms of each DMA molecule and 

additional CH activation of the β-hydrogen of DMA. However, we propose that once the 

second DMA molecule is activated by the cluster, the first and the second bridging hydride 

ligands are reductively eliminated by formation of a molecule of H2.  

The Os1-Os2 bond length is about 2.8394(3) Å and Os2 _ Os3 bond length is about 

2.9025(3) Å which demonstrates that the former is slightly shorter. This can be explained 

by coordination of C3, C2, and O1, which are considered to be on the left hand side of the 

cluster, to Os2 whereas only C4 and O2 coordination to the right hand side of it which 
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creates an asymmetrical configuration with more atoms bridging between Os1-Os2 than 

Os2-Os3.  

Figure 1.6 ORTEP diagram of the molecular structure of, Os2(CO)6(µ-H) 

(µ- O=C(N(CH3)2)CHCH), 1, showing 30% thermal ellipsoid probability. Selected 

interatomic bond distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 2.8997(3), 

Os(2) – O(1) = 2.120(3),  Os(1) – C(3) = 2.137(5), Os(2) – C(3) = 2.080 (5), Os(1) – C(2) 

= 2.210 (4), Os(1) – H(1) = 1.85 (6), Os(2) – H(1) = 1.69 (6), C3 – Os1– H1= 78.3(17), 

Os2 – Os1– H1 = 33.0(17), Os1– Os2– H1= 36.6 

Compounds 4 and 5 were formed as a result of 1:2 reaction between 

Os3(CO)10(NCCH3)2 and DMA in reflux of methylene chloride for 12 hours. Compound 4 

has a similar structure to 3 and, as we propose in scheme 1.4, we expect that it actually was 

formed by decarbonylation of 3. 
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Figure 1.7 ORTEP diagram of the molecular structure of, Os4(CO)12(µ-O=C(N(CH3)2) 

CHCH)2, 2, showing 30% thermal ellipsoid probability. Selected interatomic bond 

distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 2.8271(5), Os(2) _ Os(3) = 

2.8826(4), Os(4) _ Os(3) = 2.8173(5), Os(1) – C(1) = 2.010(10), Os(2) – C(1) = 2.215(9), 

Os(3) – C(6) = 2.200(9), Os(4) – C(6) = 2.022(10), Os(1) – O(4) = 2.129(6), Os(4) – O(5) 

= 2.123(5); C(1) – Os(1) – Os(2) = 51.2(3), C(2) – Os(2) – Os(1) = 68.4(2), C(2) – Os(2) 

– Os(3) = 99.3(2), Os(1) – Os(2) – Os(3) = 157.218(16).   

However, there is no DMA-DMA dimer in 4 and both α- and β- carbons of each 

DMA are coordinated to Os2, forming two chelated acryloyl groups bridging between Os1i 

and Os2 i as well as Os1 and Os2. (Figure 1.9) Due to the symmetry of the complex, it is 

expected that the bond length between Os1i-Os2 and Os1-Os2 to be identical and bond 

length of 2.82678(19) Å proves this assertion.  

However, there is not a DMA-DMA dimer in 4 and both α- and β- carbons of each 

DMA is coordinated to Os2, forming two chelated acryloyls bridging between Os1i and 

Os2 as well as Os1 and Os2. (Figure 1.9) 
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Figure 1.8 ORTEP diagram of the molecular structure of, Os3(CO)9(µ-O=C(N(CH3)2) 

CH2CHCCHC(N(CH3)2)=O), 3, showing 30% thermal ellipsoid probability. Selected 

interatomic bond distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 2.8394(3), 

Os(2) _ Os(3) = 2.9025(3), Os(1) _ C(3) = 2.093(4), Os(1) – O(1) = 2.130(3), Os(2) – C(1) 

= 1.895(5), Os(3) – C(4) = 2.181(5),  Os(3) – O(2) = 2.131(3), C(3) – C(4) = 1.476(6); 

O(1) – Os(1) – Os(2) = 83.13(9), Os(1) – Os(2) – Os(3) = 104.141(8), C(3) – C(4) – Os(3) 

= 100.5(3).  

Due to the symmetry of the complex, it is expected that the bond length between 

Os1i-Os2 and Os1-Os2 to be identical and bond length of 2.82678(19) Å proves this 

assertion.  

Moreover, compound 5 is the only Os6 complex identified and characterized in this 

work and it has an interesting unopened Os3 carbonyl fragment bonded to an open Os3 

fragment which contains a bridging acryrolyl between Os5-Os6 (Figure 1.10). As we will 

propose later in this work, we assume synthesis of 5 by reaction between 6 and Os3(CO)12 
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which undergoes Os-Os formation and decarbonylation of both terminal osmium of 6 and 

one of osmium atoms in Os3(CO)12 (Scheme 1.6).  

In compound 5, Os1-Os2 bond length of 2.8053(4) Å is significantly shorter than 

Os4-Os5 bond length of 2.8800(4) Å which can easily be explained by existence of a closed 

Os1-Os2-Os3 trimetallic ring which causes the Os-Os bond length to be shorter compared 

to that of Os4-Os5. In addition, the Os5-Os6 bond, although not included in a triosmium 

ring, is also significantly shorter that Os4-Os5 which can be due to existence of a bridging 

acryloyl between Os5 and Os6 which contributes to shortness of the Os4-Os5 bond length.  

Compound 6 was formed from the reaction between Os3(CO)10(NCCH3)2 and 

DMA at room temperature in methylene chloride in 1 hour. As it will be illustrated in 

scheme 1.7, it is a crucial isolated complex which we propose to be an intermediate to 

synthesis and formation of majority of the identified compounds. It is a saturated 50 

electron species for a configuration of its type and contains a bridging acryloyl ligand 

between Os1-Os2 in addition to a terminal hydride H3 (Figure 1.11).  

On the other hand, compound 7 was formed by reaction of 6 with trimethylamine 

N-oxide at 45 ͦ C in methylene chloride in 7 days. Since we predicted the existence of I*, 

decarbonylation of 6 was an attempt to synthesize and isolate it since in order for the cluster 

of 6 to be transformed into a closed Os3 cluster, by removal of a CO ligand from the 

terminal osmium atom and formation of a Os-Os bond was required (Scheme 1.2). 

However, the unexpected isolation of 7 was achieved which we believe occurred 

through an unknown mechanism either through first formation of I* and additional Os-Os 
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bond formation or through transformations in the structure of 6 after the decarbonylation 

step. 

Figure 1.9 ORTEP diagram of the molecular structure of, Os3(CO)8(µ-O=C(N(CH3)2) 

CHCH)2, 4, showing 30% thermal ellipsoid probability. Selected interatomic bond 

distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 2.82678(19), Os(2) _ Os(1i) = 

2.82678(19), Os(1) _ C(1) = 2.031(4), Os(1) – O(1) = 2.129(3); C(1) – Os(2) – C(1i) = 

94.5(2), Os(1) – Os(2) – Os(1i) = 174.946(9), Os(1) – C(1) – Os(2) = 83.74(14), O(1) – 

Os(1) – Os(2) = 82.43(7). 

            We believe either of the aforementioned processes could result in formation of 7. 

Compound 7 contains a triply bridged (µ3-) acryloyl group bonded to Os3, Os4, and Os5 

(Figure 1.12) which is very similar to the structure proposed to exist in I* and a (µ2-) 

acryloyl bridge between Os1-Os2 which exists in 6. The bond length between Os1-Os2 in 
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7 is very close to that of 6 (Os1-Os2: 2.8111(4)) which is expected as they both are similar 

fragments containing the same olefin as a bridge.  

Figure 1.10 ORTEP diagram of the molecular structure of, Os6(CO)20(µ-H)(µ-

O=C(N(CH3)2)CHCH),  5, showing 30% thermal ellipsoid probability. Selected interatomic 

bond distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 2.8053(4),  

Os(2) _ Os(3) = 2.9134(4), Os(2) _ Os(4) = 2.9162(4), Os(4) – Os(5) = 2.8800(4),  

Os(5) – Os(6) = 2.8272(4), Os(4) – H(3) = 1.86(9), Os(2) – H(3) = 1.78(8),  

Os(5) – C(2) = 2.289(8), Os(6) – O(1) = 2.135(5), Os(6) – C(1) = 2.057(8);  

Os(1) – Os(2) – Os(3) = 62.086(10), Os(1) – Os(2) – Os(4) = 124.414(12),  

Os(3) – Os(2) – Os(4) = 124.414(12), Os(6) – Os(5) – Os(4) = 159.684(14). 

            The formation of 6 is the most important step in synthesis of all the acquired 

complexes in this work as it acts as a precursor to almost all of the other compounds. Upon 

treatment of Os3(CO)10(NCCH3)2 with excess DMA in methylene chloride, compound 6 

forms at room temperature through and oxidative addition process and upon heating the 

reaction mixture it transforms directly to 1, 3, and 5. One of the most interesting of these 

transformations is the cleavage of Os-Os bond and a shift in the terminal hydride to a 

bridging hydride between two of the other osmium atoms. 
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Figure 1.11 ORTEP diagram of the molecular structure of HOs3(CO)10(µ-

O=C(N(CH3)2)CHCH), 6, showing 30% thermal ellipsoid probability. Selected interatomic 

bond distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 2.8154(3), 2.8930(4), Os(3) 
_ H(3) = 1.89(6), 2.020(6), Os(2) – C(1) = 2.215(9), Os(2) – C(2) = 2.294(6), Os(1) – O(1) 

= 2.126(4), Os(1) – C(1) = 2.020(6); C(13) – Os(1) – Os(2) = 91.72(19), O(1) – Os(1) – 

Os(2) = 82.13(10), Os(2) – Os(3) – H(3) = 83.3(18), Os(1) – Os(2) – Os(3) = 157.352(11). 

Scheme 1.3 depicts the proposed mechanism of transformation of 6 to 1 at high 

temperatures. We propose that 6, a saturated 50 electron species, cleaves an Os-Os bond 

resulting in formation of binuclear 1 and Os(CO)4. Compound 1 is a saturated 34 electron 

cluster and is stable at room temperature. In addition, hydride shifts from the terminal 

hydride onto the other two neighboring osmium atoms. In addition, we propose that 6 is 

transformed to 3 upon treatment with excess DMA and heat through a process in which the 

terminal hydride in the former shifts onto the bridging carbon of the chelating DMA and 
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another DMA molecule couples with it to form a C-C bond while the yielding dimer is still 

chelated to the cluster forming 3, a 48 electron saturated complex 

Figure 1.12 ORTEP diagram of the molecular structure of,  

Os5(CO)15(µ-O=C(N(CH3)2)CHCH)2, 7, showing 30% thermal ellipsoid probability. 

Selected interatomic bond distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 

2.8111(4), Os(2) _ Os(3) = 2.8563(4), Os(4) _ Os(3) = 2.8635(4), Os(5) _ Os(4) = 2.8460(4), 

Os(1) – C(1) = 2.040(7), Os(2) – C(1) = 2.171(7), Os(3) – C(6) = 2.088(6), Os(4) – C(6) = 

1.926(7), Os(1) – O(1) = 2.121(5), Os(3) – O(2) = 2.143(5); C(1) – Os(1) – O (1) = 

2.143(5), C(1) – Os(2) – C(2) = 37.6(3), C(1) – Os(1) – Os(2) = 50.14(19), Os(1) – Os(2) 

– Os(3) = 159.706(13).  

 

Scheme 1.3. Proposed scheme for transformation of 6 to 1. 
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 In this reaction, coupling of two DMA molecules assisted by trimetallic complex 

of osmium was achieved. In order to fully saturate the cluster, the formed dimer undergoes 

H2 elimination so the µ3 carbon can donate three electrons to the cluster instead of two 

resulting in a saturated 48 electron complex 3. Scheme 1.4 shows the proposed mechanism 

of conversion of 6 to 3. In 3, there is one µ3 and one µ2 bridging carbon atoms. 

Furthermore, as shown in scheme 1.5, through an interesting process of hydrogen 

shift within the chelated dimer, we propose that 3 transforms to 4 by involvement of α-

carbon of one of the dimer’s carbonyls in forming a metal-carbon bond. In this process, the 

previously µ3 carbon atom in 3 becomes µ2  and the newly involved α-carbon, which 

previously possessed two hydrogen atoms, transfers one of its hydrogen atoms to the 

former µ3 carbon resulting in two µ2 carbons. 

We also propose that 5 is formed by addition of Os3(CO)12 to 6 in a process 

through which   two Os-Os bonds are formed between the terminal Osmium of 6 and two 

osmium atoms of Os3(CO)12. The terminal hydride ligand in 6 becomes µ2 between 

terminal osmium of 6 and one of the osmium atoms in Os3(CO)12. 

Scheme 1.4. Proposed scheme for transformation of 6 to 3. 
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Scheme 1.5. Proposed scheme for transformation of 3 to 4. 

 In order to yield a stable saturated complex, two CO ligands were eliminated, one 

of them from the terminal osmium of 6 and one from one of osmiums in Os3(CO)12, 

yielding 5 which is a saturated 94 electron cluster. Proposed scheme of formation of 5 from 

6 is shown in scheme 1.6.  

Through another Os-Os formation process, we propose that 1 is transformed at high 

temperature through a reductive elimination of H2 to yield 2. Scheme 1.7. illustrates 

conversion of 1 to 2.   

 

Scheme 1.6. Proposed scheme for transformation of 6 to 5. 
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Scheme 1.7. Proposed scheme for transformation of 1 to 2. 

Although we were not able to isolate and characterize I*, reaction of 

Os3(CO)10(NCMe)2 with methyl acrylate yielded 8 which is triple bridging chelating 

methyl acrylate on the trisomium cluster. We propose existence of I* which has the same 

electron count and same chelating vinyl group as in 8. However, as mentioned earlier in 

this study, we believe that 6 is a precursor to synthesis of other species characterized in this 

study and not 8. Proposed mechanism for formation of 6 and its transformation to I* was 

discussed earlier in scheme 1.2.  

 In addition, compound 8 was formed by reaction of Os3(CO)10(NCCH3)2 with MA 

in reflux of hexane for 3 hours. Compound 8 is a 48 electron saturated closed cluster with 

a triply bridged acryloyl (µ3-C2H2) group coordinated to all the osmium atoms in the 

cluster in addition to a bridging hydride (µ-H) ligand (Figure 1.13).  

As mentioned earlier in this work, compound 8 is an ester equivalent of I* with a -

OCH3 fragment bonded to the carbonyl’s carbon atom of the acryloyl instead of a  

–N(CH3)2 group. Compound 8 was easily isolated and identified without any need for 

further decarbonylation of Os3 cluster.  
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Figure 1.13 ORTEP diagram of the molecular structure of, Os3(CO)9(µ-H)(µ-

O=C(OCH3)CHCH), 8, showing 30% thermal ellipsoid probability. Selected interatomic 

bond distances (Å) and angles (o) are as follow: Os(1) _ Os(2) = 2.8398(6),  

Os(1) _ Os(3) = 2.9636(6), Os(2) _ Os(3) = 2.8091(6), Os(1) – H(1) = 1.80(2),  

Os(3) – H(1) = 1.80(2), Os(1) – O(1) = 2.130(7), Os(3) – C(1) = 2.069(11);  

Os(2) – Os(1) – Os(3) = 57.852(15), Os(2) – Os(1) – H(1) = 90.6(12), Os(3) – Os(1) – H(1) 

= 34.7(7). 

It is expected that I* would have very similar bond lengths and bond angles to 8 as 

they both are very similar in structure. The bond length between Os1-Os2 is very similar 

to Os2-Os3 and they both are significantly shorter than that of Os1-Os3 which can be 

explained by existence of a C1-C2 bridge on the edge of Os2-Os3 and C2-C3-O1 on the 

edge of Os1-Os2 whereas existence of merely a bridging hydride on the edge of Os1-Os3.  

 The mechanism through which 8 is formed is unknown since there is no other 

activated MA complex identified to aid us in explaining the reaction process, but 

considering it was formed in a 28% yield shows that it was synthesized by direct C-H 
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activation and µ3 coordination to the Os3 cluster and not from any other precursors unlike 

what we expect would be the case with I*
. 

1.5 Summary and Conclusions 

  In this study, the activation of the C-H bond on the β-carbon of methyl acrylate 

and N,N-dimethyl acrylamide using a trimetallic carbonyl cluster of osmium was studied 

and further transformations resulting from this C-H activation and their resulting 

interesting species were isolated and characterized.  

In this work, various species with different nuclearity of osmium were isolated, a 

chelating dimer of DMA was formed, transformations of trisomium cluster to each of the 

other characterized species were proposed, and existence of a missing complex (I*) was 

predicted. In addition, an ester equivalent of I* was isolated and characterized in which 

methyl acrylate was used to react with activated Os3 cluster instead of N,N-dimethyl 

acrylamide.  

Synthesis and characterization of 6 was a crucial step in understanding the 

mechanism of synthesis of majority of the identified species and proposed mechanisms for 

transformation of 6 to 1, 3 and 5 were studied. In addition, it was proposed that 2 and 4 

were formed from 1 and 3, respectively. Scheme 1.7 summarizes the synthesis and 

transformations of the characterized activated DMA chelating cluster complexes. The 

variety of species obtained from simple reaction of Os3(CO)10(NCCH3)2 with DMA proves 

the complexity of mechanism involved in synthesis of each reported complex.  
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This study can be further enriched by additional studies on electron density of each 

species using Quantum Theory of the Atom in a Molecule (QTAIM) model16 which might 

confirm or reject proposed mechanisms and predictions made in this work.  

In addition, considering Osmium and Ruthenium are both in group VIII of the 

periodic table, similar C-H activations and further transformations can be studied by using 

the Ru3(CO)12 cluster complex because it possesses the same electron count, reacts easier 

even without a need for activation, and forms stable clusters.  Furthermore, activated 

cluster of methyl acrylate, 8, can be further studied in hopes of isolating the equivalent 

clusters with various nuclearity studied in this work.  
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Scheme 1.8. A schematic mechanism for synthesis and transformations of 1, 2, 3, 4, 5, 

and 6. 
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Table 1.1 Crystallographic Data for Compounds 1, 2 and 3.  

  *R1 = hkl(Fobs-Fcalc)/hklFobs; wR2 = [hklw(Fobs-Fcalc)2/hklwF2
obs]

1/2;  

  w = 1/2(Fobs); GOF = [hklw(Fobs-Fcalc)2/(ndata – nvari)]
1/2. 

COMPOUND      1        2                                 3                        

Empirical formula Os2NO7H9C11 Os4N2O14C22H16  Os3N2O11C19H16 

Formula weight 647.65 1293.17 1018.94 

Crystal system Triclinic Orthorhombic Triclinic 

Lattice parameters    

a (Å) 9.7387(5) 22.2594(9) 8.2350(3) 

b (Å) 9.8739(5) 7.2928(3) 9.4604(3) 

c (Å) 10.3898(5) 18.4471(7) 16.4609(6) 

 (deg) 62.4050(10) 90.00 93.3680(10) 

 (deg) 94.647(1) 90.00 91.4300(10) 

 (deg) 60.747(2) 90.00 108.9270(10) 

V (Å3) 765.97(7) 2994.6(2) 1209.66(7) 

Space group P1 Pna2(1) P1 

Z value 2 4 2 

calc (g / cm3) 2.808 2.868 2.504 

 (Mo K) (mm-1) 16.601 16.985 7.081 

Temperature (K) 302(2) 302(2) 294(2) 

2max (°) 59.9 55.2 55.94 

No. Obs. (I > 2(I)) 5091 5249 12496 

No. Parameters 205 389 1123 

Goodness of fit (GOF) 1.044 1.106 0.978 

Max. shift in cycle 0.002 0.003 0.001 

Residuals*: R1; wR2 0.0535; 0.1430 0.0357; 0.0677 0.0449; 0.0865 

Absorption Correction, 

Max/min 

Multi-scan 

0.1283 / 0.0326 

Multi-scan 

1.000 / 0.2677 

Multi-scan 

1.000 / 0.4749 

Largest peak in Final 

Diff. Map (e- / Å3) 

2.927 1.618 1.861 
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Table 1.2 Crystallographic Data for Compounds 4, 5 and 6. 

*R = hkl(Fobs-Fcalc)/hklFobs; Rw = [hklw(Fobs-Fcalc)2/hklwF2
obs]

1/2;  

 w = 1/2(Fobs); GOF = [hklw(Fobs-Fcalc)2/(ndata – nvari)]
1/2. 

 COMPOUND            4          5         6 

Empirical formula Os3N2O10H8C18 Os6NO21C25H9 Os3NO11H9C15 

Formula weight 982.86 1800.53 949.83 

Crystal system Monoclinic Monoclinic Monoclinic 

Lattice parameters    

a (Å) 17.0726(9) 28.3586(16) 24.2516(18) 

b (Å) 6.8836(4) 8.0529(5) 13.3745(10) 

c (Å) 19.3694(10) 15.8597(9) 15.5724(11) 

 (deg) 90.00 90.00 90.00 

 (deg) 100.141(2) 101.968(2) 126.2982(16) 

 (deg) 90.00 90.00 90.00 

V (Å3) 2240.7(2) 3543.1(4) 4070.8(5) 

Space group C2/c Cc C2/c 

Z value 4 4 8 

calc (g / cm3) 2.550 2.336 3.100 

 (Mo K) (mm-1) 7.081 7.081 18.739 

Temperature (K) 294(2) 294(2) 100(2) 

2max (°) 52.46 54.12 55.36 

No. Obs. (I > 2(I)) 6246 5543 4471 

No. Parameters 444 353 313 

Goodness of fit (GOF) 1.063 1.026 1.099 

Max. shift in cycle 0.000 0.019 0.001 

Residuals*: R1; wR2 0.0551; 0.1513 0.0328; 0.0833 0.0281;0.0613 

Absorption Correction, 

Max/min 

Multi-scan 

1.000 / 0.3225 

Multi-scan 

1.000 / 0.4653 

Multi-scan 

1.000 / 0.6377 

Largest peak in Final 

Diff. Map (e- / Å3) 

2.808 2.041 1.080 
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Table 1.3 Crystallographic Data for Compounds 7 and 8. 

*R = hkl(Fobs-Fcalc)/hklFobs; Rw = [hklw(Fobs-Fcalc)2/hklwF2
obs]

1/2;  

 w = 1/2(Fobs); GOF = [hklw(Fobs-Fcalc)2/(ndata – nvari)]
1/2. 

COMPOUND            7          8 

Empirical formula Os5N2O16H16C24 Os3O11H6C13 

Formula weight 1539.39 908.78 

Crystal system Triclinic Monoclinic 

Lattice parameters   

a (Å) 10.8152(8) 9.4989(5) 

b (Å) 11.6213(8) 10.8940(5) 

c (Å) 14.0818(10) 17.8101(9) 

 (deg) 66.965(3) 90.00 

 (deg) 82.032(3) 100.152(2) 

 (deg) 82.233(3) 90.00 

V (Å3) 1606.7(2) 1814.15(16) 

Space group P1 P2(1)/c 

Z value 2 4 

calc (g / cm3) 2.550 1.794 

 (Mo K) (mm-1) 7.081 7.081 

Temperature (K) 294(2) 294(2) 

2max (°) 52.46 55.5 

No. Obs. (I > 2(I)) 6246 4471 

No. Parameters 444 313 

Goodness of fit (GOF) 1.063 1.099 

Max. shift in cycle 0.000 0.001 

Residuals*: R1; wR2 0.0551; 0.1513 0.0281; 0.0613 

Absorption Correction, 

Max/min 

Multi-scan 

1.000 / 0.3225 

Multi-scan 

1.000 / 0.6377 

Largest peak in Final Diff. 

Map (e- / Å3) 

2.808  1.080 
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